
Cluster Setup

Table of contents

1 Purpose...2

2 Prerequisites...2

3 Installation..2

4 Configuration... 2

4.1 Configuration Files..2

4.2 Site Configuration... 3

5 Cluster Restartability... 14

5.1 MapReduce..14

6 Hadoop Rack Awareness... 14

7 Hadoop Startup.. 15

8 Hadoop Shutdown..15

Copyright © 2008 The Apache Software Foundation. All rights reserved.

1. Purpose

This document describes how to install, configure and manage non-trivial Hadoop clusters
ranging from a few nodes to extremely large clusters with thousands of nodes.

To play with Hadoop, you may first want to install Hadoop on a single machine (see Single
Node Setup).

2. Prerequisites
1. Make sure all required software is installed on all nodes in your cluster.
2. Download the Hadoop software.

3. Installation

Installing a Hadoop cluster typically involves unpacking the software on all the machines in
the cluster.

Typically one machine in the cluster is designated as the NameNode and another machine
the as JobTracker, exclusively. These are the masters. The rest of the machines in the
cluster act as both DataNode and TaskTracker. These are the slaves.

The root of the distribution is referred to as HADOOP_HOME. All machines in the cluster
usually have the same HADOOP_HOME path.

4. Configuration

The following sections describe how to configure a Hadoop cluster.

4.1. Configuration Files

Hadoop configuration is driven by two types of important configuration files:

1. Read-only default configuration - src/core/core-default.xml, src/hdfs/hdfs-default.xml
and src/mapred/mapred-default.xml.

2. Site-specific configuration - conf/core-site.xml, conf/hdfs-site.xml and
conf/mapred-site.xml.

To learn more about how the Hadoop framework is controlled by these configuration files,
look here.

Additionally, you can control the Hadoop scripts found in the bin/ directory of the
distribution, by setting site-specific values via the conf/hadoop-env.sh.

Cluster Setup

Page 2
Copyright © 2008 The Apache Software Foundation. All rights reserved.

single_node_setup.html
single_node_setup.html
single_node_setup.html#PreReqs
single_node_setup.html#Download
http://archive.cloudera.com/cdh/3/hadoop/core-default.html
http://archive.cloudera.com/cdh/3/hadoop/hdfs-default.html
http://archive.cloudera.com/cdh/3/hadoop/mapred-default.html
api/org/apache/hadoop/conf/Configuration.html

4.2. Site Configuration

To configure the Hadoop cluster you will need to configure the environment in which the
Hadoop daemons execute as well as the configuration parameters for the Hadoop daemons.

The Hadoop daemons are NameNode/DataNode and JobTracker/TaskTracker.

4.2.1. Configuring the Environment of the Hadoop Daemons

Administrators should use the conf/hadoop-env.sh script to do site-specific
customization of the Hadoop daemons' process environment.

At the very least you should specify the JAVA_HOME so that it is correctly defined on each
remote node.

In most cases you should also specify HADOOP_PID_DIR to point a directory that can only
be written to by the users that are going to run the hadoop daemons. Otherwise there is the
potential for a symlink attack.

Administrators can configure individual daemons using the configuration options
HADOOP_*_OPTS. Various options available are shown below in the table.

Daemon Configure Options

NameNode HADOOP_NAMENODE_OPTS

DataNode HADOOP_DATANODE_OPTS

SecondaryNamenode HADOOP_SECONDARYNAMENODE_OPTS

JobTracker HADOOP_JOBTRACKER_OPTS

TaskTracker HADOOP_TASKTRACKER_OPTS

For example, To configure Namenode to use parallelGC, the following statement should be
added in hadoop-env.sh :
export HADOOP_NAMENODE_OPTS="-XX:+UseParallelGC
${HADOOP_NAMENODE_OPTS}"

Other useful configuration parameters that you can customize include:

• HADOOP_LOG_DIR - The directory where the daemons' log files are stored. They are
automatically created if they don't exist.

• HADOOP_HEAPSIZE - The maximum amount of heapsize to use, in MB e.g. 1000MB.
This is used to configure the heap size for the hadoop daemon. By default, the value is
1000MB.

Cluster Setup

Page 3
Copyright © 2008 The Apache Software Foundation. All rights reserved.

4.2.2. Configuring the Hadoop Daemons

This section deals with important parameters to be specified in the following:
conf/core-site.xml:

Parameter Value Notes

fs.default.name URI of NameNode. hdfs://hostname/

conf/hdfs-site.xml:

Parameter Value Notes

dfs.name.dir Path on the local filesystem
where the NameNode stores
the namespace and
transactions logs persistently.

If this is a comma-delimited list
of directories then the name
table is replicated in all of the
directories, for redundancy.

dfs.data.dir Comma separated list of paths
on the local filesystem of a
DataNode where it should
store its blocks.

If this is a comma-delimited list
of directories, then data will be
stored in all named directories,
typically on different devices.

conf/mapred-site.xml:

Parameter Value Notes

mapred.job.tracker Host or IP and port of
JobTracker.

host:port pair.

mapred.system.dir Path on the HDFS where
where the MapReduce
framework stores system files
e.g.
/hadoop/mapred/system/.

This is in the default filesystem
(HDFS) and must be
accessible from both the server
and client machines.

mapred.local.dir Comma-separated list of paths
on the local filesystem where
temporary MapReduce data is
written.

Multiple paths help spread disk
i/o.

mapred.tasktracker.{map|reduce}.tasks.maximumThe maximum number of
MapReduce tasks, which are
run simultaneously on a given
TaskTracker, individually.

Defaults to 2 (2 maps and 2
reduces), but vary it depending
on your hardware.

dfs.hosts/dfs.hosts.exclude List of permitted/excluded
DataNodes.

If necessary, use these files to
control the list of allowable
datanodes.

Cluster Setup

Page 4
Copyright © 2008 The Apache Software Foundation. All rights reserved.

mapred.hosts/mapred.hosts.excludeList of permitted/excluded
TaskTrackers.

If necessary, use these files to
control the list of allowable
TaskTrackers.

mapred.queue.names Comma separated list of
queues to which jobs can be
submitted.

The MapReduce system
always supports atleast one
queue with the name as
default. Hence, this parameter's
value should always contain
the string default. Some job
schedulers supported in
Hadoop, like the Capacity
Scheduler, support multiple
queues. If such a scheduler is
being used, the list of
configured queue names must
be specified here. Once
queues are defined, users can
submit jobs to a queue using
the property name
mapred.job.queue.name in the
job configuration. There could
be a separate configuration file
for configuring properties of
these queues that is managed
by the scheduler. Refer to the
documentation of the scheduler
for information on the same.

mapred.acls.enabled Boolean, specifying whether
checks for queue ACLs and job
ACLs are to be done for
authorizing users for doing
queue operations and job
operations.

If true, queue ACLs are
checked while submitting and
administering jobs and job
ACLs are checked for
authorizing view and
modification of jobs. Queue
ACLs are specified using the
configuration parameters of the
form
mapred.queue.queue-name.acl-name,
defined below under
mapred-queue-acls.xml. Job
ACLs are described at Job
Authorization

conf/mapred-queue-acls.xml

Parameter Value Notes

Cluster Setup

Page 5
Copyright © 2008 The Apache Software Foundation. All rights reserved.

capacity_scheduler.html
capacity_scheduler.html
mapred_tutorial.html#Job+Authorization
mapred_tutorial.html#Job+Authorization

mapred.queue.queue-name.acl-submit-jobList of users and groups that
can submit jobs to the specified
queue-name.

The list of users and groups are
both comma separated list of
names. The two lists are
separated by a blank. Example:
user1,user2 group1,group2. If
you wish to define only a list of
groups, provide a blank at the
beginning of the value.

mapred.queue.queue-name.acl-administer-jobsList of users and groups that
can view job details, change
the priority or kill jobs that have
been submitted to the specified
queue-name.

The list of users and groups are
both comma separated list of
names. The two lists are
separated by a blank. Example:
user1,user2 group1,group2. If
you wish to define only a list of
groups, provide a blank at the
beginning of the value. Note
that the owner of a job can
always change the priority or
kill his/her own job, irrespective
of the ACLs.

Typically all the above parameters are marked as final to ensure that they cannot be
overriden by user-applications.

4.2.2.1. Real-World Cluster Configurations

This section lists some non-default configuration parameters which have been used to run the
sort benchmark on very large clusters.

• Some non-default configuration values used to run sort900, that is 9TB of data sorted on
a cluster with 900 nodes:

Configuration File Parameter Value Notes

conf/hdfs-site.xml dfs.block.size 134217728 HDFS blocksize of
128MB for large
file-systems.

conf/hdfs-site.xml dfs.namenode.handler.count40 More NameNode
server threads to
handle RPCs from
large number of
DataNodes.

conf/mapred-site.xml mapred.reduce.parallel.copies20 Higher number of
parallel copies run
by reduces to fetch

Cluster Setup

Page 6
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/conf/Configuration.html#FinalParams

outputs from very
large number of
maps.

conf/mapred-site.xml mapred.map.child.java.opts-Xmx512M Larger heap-size
for child jvms of
maps.

conf/mapred-site.xml mapred.reduce.child.java.opts-Xmx512M Larger heap-size
for child jvms of
reduces.

conf/core-site.xml fs.inmemory.size.mb 200 Larger amount of
memory allocated
for the in-memory
file-system used to
merge
map-outputs at the
reduces.

conf/core-site.xml io.sort.factor 100 More streams
merged at once
while sorting files.

conf/core-site.xml io.sort.mb 200 Higher
memory-limit while
sorting data.

conf/core-site.xml io.file.buffer.size 131072 Size of read/write
buffer used in
SequenceFiles.

• Updates to some configuration values to run sort1400 and sort2000, that is 14TB of data
sorted on 1400 nodes and 20TB of data sorted on 2000 nodes:

Configuration File Parameter Value Notes

conf/mapred-site.xml mapred.job.tracker.handler.count60 More JobTracker
server threads to
handle RPCs from
large number of
TaskTrackers.

conf/mapred-site.xml mapred.reduce.parallel.copies50

conf/mapred-site.xml tasktracker.http.threads 50 More worker
threads for the
TaskTracker's http
server. The http
server is used by

Cluster Setup

Page 7
Copyright © 2008 The Apache Software Foundation. All rights reserved.

reduces to fetch
intermediate
map-outputs.

conf/mapred-site.xml mapred.map.child.java.opts-Xmx512M Larger heap-size
for child jvms of
maps.

conf/mapred-site.xml mapred.reduce.child.java.opts-Xmx1024M Larger heap-size
for child jvms of
reduces.

4.2.2.2. Task Controllers

Task controllers are classes in the Hadoop MapReduce framework that define how user's
map and reduce tasks are launched and controlled. They can be used in clusters that require
some customization in the process of launching or controlling the user tasks. For example, in
some clusters, there may be a requirement to run tasks as the user who submitted the job,
instead of as the task tracker user, which is how tasks are launched by default. This section
describes how to configure and use task controllers.

The following task controllers are the available in Hadoop.

Name Class Name Description

DefaultTaskController org.apache.hadoop.mapred.DefaultTaskControllerThe default task controller
which Hadoop uses to manage
task execution. The tasks run
as the task tracker user.

LinuxTaskController org.apache.hadoop.mapred.LinuxTaskControllerThis task controller, which is
supported only on Linux, runs
the tasks as the user who
submitted the job. It requires
these user accounts to be
created on the cluster nodes
where the tasks are launched.
It uses a setuid executable that
is included in the Hadoop
distribution. The task tracker
uses this executable to launch
and kill tasks. The setuid
executable switches to the user
who has submitted the job and
launches or kills the tasks. For
maximum security, this task
controller sets up restricted

Cluster Setup

Page 8
Copyright © 2008 The Apache Software Foundation. All rights reserved.

permissions and user/group
ownership of local files and
directories used by the tasks
such as the job jar files,
intermediate files, task log files
and distributed cache files.
Particularly note that, because
of this, except the job owner
and tasktracker, no other user
can access any of the local
files/directories including those
localized as part of the
distributed cache.

Configuring Task Controllers

The task controller to be used can be configured by setting the value of the following key in
mapred-site.xml

Property Value Notes

mapred.task.tracker.task-controllerFully qualified class name of
the task controller class

Currently there are two
implementations of task
controller in the Hadoop
system, DefaultTaskController
and LinuxTaskController. Refer
to the class names mentioned
above to determine the value to
set for the class of choice.

Using the LinuxTaskController

This section of the document describes the steps required to use the LinuxTaskController.

In order to use the LinuxTaskController, a setuid executable should be built and deployed on
the compute nodes. The executable is named task-controller. To build the executable, execute
ant task-controller -Dhadoop.conf.dir=/path/to/conf/dir. The path passed in
-Dhadoop.conf.dir should be the path on the cluster nodes where a configuration file for the
setuid executable would be located. The executable would be built to build.dir/dist.dir/bin
and should be installed to $HADOOP_HOME/bin.

The executable must have specific permissions as follows. The executable should have 4754
or -rwsr-xr-- permissions user-owned by root(super-user) and group-owned by a special
group of which the TaskTracker's user is the group member and no job submitter is. If any
job submitter belongs to this special group, security will be compromised. This special group

Cluster Setup

Page 9
Copyright © 2008 The Apache Software Foundation. All rights reserved.

name should be specified for the configuration property "mapreduce.tasktracker.group" in
both mapred-site.xml and task-controller.cfg. For example, let's say that the TaskTracker is
run as user mapred who is part of the groups users and specialGroup any of them being the
primary group. Let also be that users has both mapred and another user (job submitter) X as
its members, and X does not belong to specialGroup. Going by the above description, the
setuid/setgid executable should be set 4754 or -rwsr-xr-- with user-owner as mapred and
group-owner as specialGroup which has mapred as its member(and not users which has X
also as its member besides mapred).

The LinuxTaskController requires that paths including and leading up to the directories
specified in mapred.local.dir and hadoop.log.dir to be set 755 permissions.

task-controller.cfg

The executable requires a configuration file called taskcontroller.cfg to be present in the
configuration directory passed to the ant target mentioned above. If the binary was not built
with a specific conf directory, the path defaults to /path-to-binary/../conf. The configuration
file must be owned by the user running TaskTracker (user mapred in the above example),
group-owned by anyone and should have the permissions 0400 or r--------.

The executable requires following configuration items to be present in the taskcontroller.cfg
file. The items should be mentioned as simple key=value pairs.

Name Description

hadoop.log.dir Path to hadoop log directory. Should be same
as the value which the TaskTracker is started
with. This is required to set proper permissions
on the log files so that they can be written to by
the user's tasks and read by the TaskTracker for
serving on the web UI.

mapreduce.tasktracker.group Group to which the TaskTracker belongs. The
group owner of the taskcontroller binary should
be this group. Should be same as the value with
which the TaskTracker is configured. This
configuration is required for validating the secure
access of the task-controller binary.

4.2.2.3. Monitoring Health of TaskTracker Nodes

Hadoop MapReduce provides a mechanism by which administrators can configure the
TaskTracker to run an administrator supplied script periodically to determine if a node is
healthy or not. Administrators can determine if the node is in a healthy state by performing
any checks of their choice in the script. If the script detects the node to be in an unhealthy

Cluster Setup

Page 10
Copyright © 2008 The Apache Software Foundation. All rights reserved.

state, it must print a line to standard output beginning with the string ERROR. The
TaskTracker spawns the script periodically and checks its output. If the script's output
contains the string ERROR, as described above, the node's status is reported as 'unhealthy'
and the node is black-listed on the JobTracker. No further tasks will be assigned to this node.
However, the TaskTracker continues to run the script, so that if the node becomes healthy
again, it will be removed from the blacklisted nodes on the JobTracker automatically. The
node's health along with the output of the script, if it is unhealthy, is available to the
administrator in the JobTracker's web interface. The time since the node was healthy is also
displayed on the web interface.

Configuring the Node Health Check Script

The following parameters can be used to control the node health monitoring script in
mapred-site.xml.

Name Description

mapred.healthChecker.script.path Absolute path to the script which is periodically
run by the TaskTracker to determine if the node
is healthy or not. The file should be executable
by the TaskTracker. If the value of this key is
empty or the file does not exist or is not
executable, node health monitoring is not
started.

mapred.healthChecker.interval Frequency at which the node health script is run,
in milliseconds

mapred.healthChecker.script.timeout Time after which the node health script will be
killed by the TaskTracker if unresponsive. The
node is marked unhealthy. if node health script
times out.

mapred.healthChecker.script.args Extra arguments that can be passed to the node
health script when launched. These should be
comma separated list of arguments.

4.2.3. Memory monitoring

A TaskTracker(TT) can be configured to monitor memory usage of tasks it spawns, so
that badly-behaved jobs do not bring down a machine due to excess memory consumption.
With monitoring enabled, every task is assigned a task-limit for virtual memory (VMEM). In
addition, every node is assigned a node-limit for VMEM usage. A TT ensures that a task is
killed if it, and its descendants, use VMEM over the task's per-task limit. It also ensures that
one or more tasks are killed if the sum total of VMEM usage by all tasks, and their

Cluster Setup

Page 11
Copyright © 2008 The Apache Software Foundation. All rights reserved.

descendants, cross the node-limit.

Users can, optionally, specify the VMEM task-limit per job. If no such limit is provided, a
default limit is used. A node-limit can be set per node.

Currently the memory monitoring and management is only supported in Linux platform.

To enable monitoring for a TT, the following parameters all need to be set:

Name Type Description

mapred.cluster.map.memory.mb,
mapred.cluster.reduce.memory.mb

long The size, in terms of virtual
memory, of a single
map/reduce slot in the
Map-Reduce framework, used
by the scheduler. A job can ask
for multiple slots for a single
task via
mapred.job.map.memory.mb/mapred.job.reduce.memory.mb,
up to the limit specified by
mapred.cluster.max.map.memory.mb/mapred.cluster.max.reduce.memory.mb,
if the scheduler supports the
feature. The value of -1
indicates that this feature is
turned off.

mapred.job.map.memory.mb,
mapred.job.reduce.memory.mb

long A number, in bytes, that
represents the default VMEM
task-limit associated with a
map/reduce task. Unless
overridden by a job's setting,
this number defines the VMEM
task-limit. These properties
replace the old deprecated
property,
mapred.task.default.maxvmem.

mapred.cluster.max.map.memory.mb,
mapred.cluster.max.reduce.memory.mb

long A number, in bytes, that
represents the upper VMEM
task-limit associated with a
map/reduce task. Users, when
specifying a VMEM task-limit
for their tasks, should not
specify a limit which exceeds
this amount. These properties
replace the old deprecated
property,
mapred.task.limit.maxvmem.

Cluster Setup

Page 12
Copyright © 2008 The Apache Software Foundation. All rights reserved.

In addition, the following parameters can also be configured.

Name Type Description

mapred.tasktracker.taskmemorymanager.monitoring-intervallong The time interval, in
milliseconds, between which
the TT checks for any memory
violation. The default value is
5000 msec (5 seconds).

Here's how the memory monitoring works for a TT.

1. If one or more of the configuration parameters described above are missing or -1 is
specified , memory monitoring is disabled for the TT.

2. Periodically, the TT checks the following:
• If any task's current VMEM usage is greater than that task's VMEM task-limit, the

task is killed and reason for killing the task is logged in task diagonistics . Such a task
is considered failed, i.e., the killing counts towards the task's failure count.

• If the sum total of VMEM used by all tasks and descendants is greater than the
node-limit, the TT kills enough tasks, in the order of least progress made, till the
overall VMEM usage falls below the node-limit. Such killed tasks are not considered
failed and their killing does not count towards the tasks' failure counts.

Schedulers can choose to ease the monitoring pressure on the TT by preventing too many
tasks from running on a node and by scheduling tasks only if the TT has enough VMEM free.
In addition, Schedulers may choose to consider the physical memory (RAM) available on the
node as well. To enable Scheduler support, TTs report their memory settings to the
JobTracker in every heartbeat.

A TT reports the following memory-related numbers in every heartbeat:

• The total VMEM available on the node.
• The remaining VMEM available on the node.
• The total RAM available on the node.
• The remaining RAM available on the node.

4.2.4. Slaves

Typically you choose one machine in the cluster to act as the NameNode and one machine
as to act as the JobTracker, exclusively. The rest of the machines act as both a
DataNode and TaskTracker and are referred to as slaves.

List all slave hostnames or IP addresses in your conf/slaves file, one per line.

Cluster Setup

Page 13
Copyright © 2008 The Apache Software Foundation. All rights reserved.

4.2.5. Logging

Hadoop uses the Apache log4j via the Apache Commons Logging framework for logging.
Edit the conf/log4j.properties file to customize the Hadoop daemons' logging
configuration (log-formats and so on).

4.2.5.1. History Logging

The job history files are stored in central location hadoop.job.history.location
which can be on DFS also, whose default value is ${HADOOP_LOG_DIR}/history. The
history web UI is accessible from job tracker web UI.

The history files are also logged to user specified directory
hadoop.job.history.user.location which defaults to job output directory. The
files are stored in "_logs/history/" in the specified directory. Hence, by default they will be in
"mapred.output.dir/_logs/history/". User can stop logging by giving the value none for
hadoop.job.history.user.location

User can view the history logs summary in specified directory using the following command
$ bin/hadoop job -history output-dir
This command will print job details, failed and killed tip details.
More details about the job such as successful tasks and task attempts made for each task can
be viewed using the following command
$ bin/hadoop job -history all output-dir

Once all the necessary configuration is complete, distribute the files to the
HADOOP_CONF_DIR directory on all the machines, typically ${HADOOP_HOME}/conf.

5. Cluster Restartability

5.1. MapReduce

The job tracker restart can recover running jobs if
mapred.jobtracker.restart.recover is set true and JobHistory logging is
enabled. Also mapred.jobtracker.job.history.block.size value should be
set to an optimal value to dump job history to disk as soon as possible, the typical value is
3145728(3MB).

6. Hadoop Rack Awareness

The HDFS and the Map/Reduce components are rack-aware.

Cluster Setup

Page 14
Copyright © 2008 The Apache Software Foundation. All rights reserved.

http://logging.apache.org/log4j/
http://commons.apache.org/logging/

The NameNode and the JobTracker obtains the rack id of the slaves in the cluster by
invoking an API resolve in an administrator configured module. The API resolves the slave's
DNS name (also IP address) to a rack id. What module to use can be configured using the
configuration item topology.node.switch.mapping.impl. The default
implementation of the same runs a script/command configured using
topology.script.file.name. If topology.script.file.name is not set, the rack id
/default-rack is returned for any passed IP address. The additional configuration in the
Map/Reduce part is mapred.cache.task.levels which determines the number of
levels (in the network topology) of caches. So, for example, if it is the default value of 2, two
levels of caches will be constructed - one for hosts (host -> task mapping) and another for
racks (rack -> task mapping).

7. Hadoop Startup

To start a Hadoop cluster you will need to start both the HDFS and Map/Reduce cluster.

Format a new distributed filesystem:
$ bin/hadoop namenode -format

Start the HDFS with the following command, run on the designated NameNode:
$ bin/start-dfs.sh

The bin/start-dfs.sh script also consults the ${HADOOP_CONF_DIR}/slaves
file on the NameNode and starts the DataNode daemon on all the listed slaves.

Start Map-Reduce with the following command, run on the designated JobTracker:
$ bin/start-mapred.sh

The bin/start-mapred.sh script also consults the
${HADOOP_CONF_DIR}/slaves file on the JobTracker and starts the
TaskTracker daemon on all the listed slaves.

8. Hadoop Shutdown

Stop HDFS with the following command, run on the designated NameNode:
$ bin/stop-dfs.sh

The bin/stop-dfs.sh script also consults the ${HADOOP_CONF_DIR}/slaves file
on the NameNode and stops the DataNode daemon on all the listed slaves.

Stop Map/Reduce with the following command, run on the designated the designated
JobTracker:
$ bin/stop-mapred.sh

Cluster Setup

Page 15
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/net/DNSToSwitchMapping.html#resolve(java.util.List)

The bin/stop-mapred.sh script also consults the ${HADOOP_CONF_DIR}/slaves
file on the JobTracker and stops the TaskTracker daemon on all the listed slaves.

Cluster Setup

Page 16
Copyright © 2008 The Apache Software Foundation. All rights reserved.

	1 Purpose
	2 Prerequisites
	3 Installation
	4 Configuration
	4.1 Configuration Files
	4.2 Site Configuration
	4.2.1 Configuring the Environment of the Hadoop Daemons
	4.2.2 Configuring the Hadoop Daemons
	4.2.2.1 Real-World Cluster Configurations
	4.2.2.2 Task Controllers
	4.2.2.2.1 Configuring Task Controllers
	4.2.2.2.2 Using the LinuxTaskController
	4.2.2.2.2.1 task-controller.cfg

	4.2.2.3 Monitoring Health of TaskTracker Nodes
	4.2.2.3.1 Configuring the Node Health Check Script

	4.2.3 Memory monitoring
	4.2.4 Slaves
	4.2.5 Logging
	4.2.5.1 History Logging

	5 Cluster Restartability
	5.1 MapReduce

	6 Hadoop Rack Awareness
	7 Hadoop Startup
	8 Hadoop Shutdown

